QUES 01:-

The mass of a spaceship is 1000 kg. It is to be launched from the earth's surface out into free space. The value of 'g' and 'R' (radius of the earth) is 10 m/s^2 and 6400 km respectively. The required energy for this work will be

- (a) 6.4 x 10¹⁰ Joules
- (b) 6.4 x 10¹¹ Joules
- (c) 6.4 x 10⁸ Joules
- (d) 6.4 x 10⁹ Joules

Solution

The energy required is given by = GMm/R

- $= gR^2 \times m/R (: g = GM/R^2)$
- = mgR
- $= 1000 \times 10 \times 6400 \times 10^{3}$
- $= 64 \times 10^9 \text{ J}$
- $= 6.4 \times 10^{10} \text{ J}$

Answer: (a) 6.4 x 10¹⁰ Joules